创新设计高考总2021数学江苏专用版
作者:admin发布时间:2020-12-20分类:江苏高考浏览:169评论:0
x∈U,x∉A}∁UA概念方法微思考1.若一个集合A有n个元素,则集合A有几个子集,几个真子集.提示 2n,2n-1.2.从A∩B=A,A∪B=A中可以分别得到集合A,B有什么关系?提示 A∩B=A⇔A⊆B,A∪B=A⇔B⊆A.1.(2020•新课标Ⅲ)已知集合,,,,则中元素的个数为 A.2 B.3 C.4 D.6【答案】C【解析】集合,,,,,,,,.中元素的个数为4.故选.2.(2020•新课标Ⅲ)已知集合,2,3,5,7,,,则中元素的个数为 A.2 B.3 C.4 D.5【答案】B【解析】集合,2,3,5,7,,,,7,,中元素的个数为3.故选.3.(2020•新课标Ⅱ)已知集合,,,,则 A. B.,,2, C.,0, D.,【答案】D【解析】集合,,,,0,1,,,或,,,.故选.4.(2020•新课标Ⅰ)已知集合,,1,3,,则 A., B., C., D.,【答案】D【解析】集合,,1,3,,则,,故选.5.(2020•山东)设集合,,则 A. B. C. D.【答案】C【解析】集合,,.故选.6.(2020•浙江)已知集合,,则 A. B. C. D.【答案】B【解析】集合,,则.故选.7.(2020•海南)某中学的学生积极参加体育锻炼,其中有的学生喜欢足球或游泳,的学生喜欢足球,的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是 A. B. C. D.【答案】C【解析】设只喜欢足球的百分比为,只喜欢游泳的百分比为,两个项目都喜欢的百分比为,由题意,可得,,,解得.该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是.故选.8.(2020•海南)设集合,3,5,,,2,3,5,,则 A.,3,5, B., C.,3, D.,2,3,5,7,【答案】C【解析】因为集合,的公共元素为:2,3,5故,3,.故选.9.(2020•天津)设全集,,,0,1,2,,集合,0,1,,,0,2,,则 A., B., C., D.,,,1,3 【答案】C【解析】全集,,,0,1,2,,集合,0,1,,,0,2,,则,,,,,故选.10.(2020•北京)已知集合,0,1,,,则 A.,0, B., C.,1, D.,【答案】D【解析】集合,0,1,,,则,,故选.11.(2020•新课标Ⅰ)设集合,,且,则 A. B. C.2 D.4【答案】B【解析】集合,,由,可得,则.故选.12.(2020•新课标Ⅱ)已知集合,,0,1,2,,,0,,,,则 A., B.,2, C.,,0, D.,,0,2,【答案】A【解析】集合,,0,1,2,,,0,,,,则,0,1,,则,,故选.13.(2019•全国)设集合,,2,3,,则的非空子集的个数为 A.8 B.7 C.4 D.3【答案】B【解析】;,3,;的非空子集的个数为:个.故选.14.(2019•天津)设集合,1,2,3,,,3,,,则 A. B., C.,2, D.,2,3,【答案】D【解析】设集合,1,2,3,,,则,,,3,,,,3,,2,3,;故选.15.(2019•浙江)已知全集,0,1,2,,集合,1,,,0,,则 A. B., C.,2, D.,0,1,【答案】A【解析】,,,,0,故选.16.(2019•新课标Ⅲ)已知集合,0,1,,,则 A.,0, B., C., D.,1,【答案】A【解析】因为,0,1,,,所以,0,,故选.17.(2019•新课标Ⅱ)已知集合,,则 A. B. C. D.【答案】C【解析】由,,得.故选.18.(2019•新课标Ⅱ)设集合,,则 A. B. C. D.【答案】A【解析】根据题意,或,,则;故选.19.(2019•新课标Ⅰ)已知集合,2,3,4,5,6,,,3,4,,,3,6,,则 A., B., C., D.,6,【答案】C【解析】,2,3,4,5,6,,,3,4,,,3,6,,,6,,则,故选.20.(2019•北京)已知集合,,则 A. B. C. D.【答案】C【解析】,,.故选.21.(2019•新课标Ⅰ)已知集合,,则 A. B. C. D.【答案】C【解析】,,.故选.22.(2018•全国)已知全集,2,3,4,5,,,2,,,4,,则 A., B.,2,3,4,5, C.,4, D.,4,【答案】A【解析】由全集,2,3,4,5,,,2,,得,4,,,4,,则,4,,4,,.故选.23.(2018•新课标Ⅱ)已知集合,,,则中元素的个数为 A.9 B.8 C.5 D.4【答案】A【解析】当时,,得,0,1,当时,,得,0,1,当时,,得,0,1,即集合中元素有9个,故选.24.(2018•天津)设集合,2,3,,,0,2,,,则 A., B., C.,0, D.,3,【答案】C【解析】,2,3,,,0,2,,,2,3,,0,2,,0,1,2,3,,又,,0,.故选.25.(2018•天津)设全集为,集合,,则 A. B. C. D.【答案】B【解析】,,,.故选.26.(2018•新课标Ⅰ)已知集合,,,,0,1,,则 A., B., C. D.,,0,1,【答案】A【解析】集合,,,,0,1,,则,.故选.27.(2018•新课标Ⅱ)已知集合,3,5,,,3,4,,则 A. B. C., D.,2,3,4,5,【答案】C【解析】集合,3,5,,,3,4,,,.故选.28.(2018•新课标Ⅰ)已知集合,则 A. B. C. D.【答案】B【解析】集合,可得或,则:.故选.29.(2018•新课标Ⅲ)已知集合,,1,,则 A. B. C., D.,1,【答案】C【解析】,,1,,,1,,.故选.30.(2018•北京)已知集合,,0,1,,则 A., B.,0, C.,0,1, D.,0,1,【答案】A【解析】,,0,1,,则,,故选.31.(2018•浙江)已知全集,2,3,4,,,,则 A. B., C.,4, D.,2,3,4,【答案】C【解析】根据补集的定义,是由所有属于集合但不属于的元素构成的集合,由已知,有且仅有2,4,5符合元素的条件.,4,故选.32.(2020•上海)已知集合,2,,集合,4,,则_________.【答案】,【解析】因为,2,,,4,,则,.故答案为:,.33.(2020•江苏)已知集合,0,1,,,2,,则_________.【答案】,【解析】集合,2,,,0,1,,则,,故答案为:,.34.(2020•上海)集合,,,2,,若,则_________.【答案】3【解析】,且,,,故答案为:3.35.(2019•上海)已知集合,,则_________.【答案】【解析】根据交集的概念可得.故答案为:.36.(2019•江苏)已知集合,0,1,,,,则_________.【答案】,【解析】,0,1,,,,,0,1,,,.故答案为:,.37.(2019•上海)已知集合,2,3,4,,,5,,则_________.【答案】,【解析】集合,2,3,4,,,5,,,.故答案为:,.38.(2019•上海)已知集合,,,,存在正数,使得对任意,都有,则的值是_________.【答案】1或【解析】当时,当,时,则,,当,时,则,,即当时,;当时,,即;当时,,当时,,即,,解得.当时,当,时,则,.当,,则,,即当时,,当时,,即,即当时,,当时,,即,,解得.当时,同理可得无解.综上,的值为1或.故答案为:1或.39.(2018•江苏)已知集合,1,2,,,1,6,,那么_________.【答案】,【解析】,1,2,,,1,6,,,1,2,,1,6,,,故答案为:,.40.(2018•上海)已知集合,,则_________.【答案】【解析】,,.故答案为:.1.(2020•汉阳区校级模拟)设全集,,,2,3,,,,0,1,,则图中阴影部分所表示的集合为 A., B., C.,3, D.,,0,1,【答案】B【解析】全集,,,0,1,2,3,,,2,3,,,,0,1,,,,图中阴影部分所表示的集合为:,.故选B.2.(2020•金凤区校级四模)已知集合,,则 A. B., C., D.,【答案】C【解析】,,,.故选C.3.(2020•泸州四模)已知集合,,则的元素个数为 A.0 B.1 C.2 D.4【答案】C【解析】集合,,,,,的元素个数为2.故选C.4.(2020•龙凤区校级模拟)集合,,,则 A. B. C., D.,1,【答案】C【解析】集合,,,,,0,,,.故选C.5.(2020•运城模拟)已知集合,,则 A. B. C. D.【答案】B【解析】,.故选B.6.(2020•南岗区校级模拟)若全集,集合,,则图中阴影部分表示的集合是 A. B., C., D.,【答案】D【解析】全集,集合,,.图中阴影部分表示的集合为:.故选D.7.(2020•香坊区校级一模)已知集合,,,若,则实数的取值集合为 A.,1,0, B.,0, C.,1, D.,【答案】B【解析】,0,1,,因为,若,则或0或2.则实数的取值的集合为,0,故选B.8.(2020•东湖区校级模拟)已知集合,,则 A. B. C. D.【答案】B【解析】因为或,所以,或,则.故选B.9.(2020•天津二模)已知全集,0,1,2,,集合,1,,,0,,则 A. B., C.,2, D.,0,1,【答案】C【解析】,0,1,2,,,1,,,0,,,,,2,.故选C.10.(2020•兴庆区校级四
2 (教师用书) - = C.{0,1} D.{ 1,0} 15. 答案 A ∵ N∩∁M ⌀,∴ N⊆M,又M≠N,∴N⫋M,I 2 - - - - = 5. 答案 A x x 2≤0⇒ 1≤x≤2,故集合A 中的整数为 1, ∴M∪N M.故选A. = - = - - = - 0,1,2.所以A∩B { 1,0,1,2}. 16.(2014江苏,1,5分)已知集合A { 2, 1,3,4},B { 1,2, 2 = - = = = 6.(2014北京,1,5分)已知集合A {x|x 2x 0},B {0,1,2}, 3},则A∩B . 则A∩B= ( ) 16. - 答案 { 1,3} A.{0} B.{0,1} C.{0,2} D.{0,1,2} = - 解析 由集合的交集定义知A∩B { 1,3}. 6. = = = = = 答案 C A {0,2},B {0,1,2},∴A∩B {0,2}.故选C. 17.(2014重庆,11,5 分)设全集 U {n ∈N|1≤n≤10},A 2 = = = = 7.(2014陕西,1,5分)设集合M {x|x≥0,x∈R},N {x|x <1, {1,2,3,5,8},B {1,3,5,7,9},则(∁A)∩B . U x∈R},则M∩N= ( ) 17. 答案 {7,9} A.[0,1] B.[0,1) C.(0,1] D.(0,1) = = = 解析 ∵ U {n∈N|1≤n≤10},A {1,2,3,5,8},∴∁A U 7. = - = = = 答案 B ∵ N ( 1,1),∴M∩N [0,1),故选B. {4,6,7,9,10},又∵B {1,3,5,7,9},∴(∁A)∩B {7,9}. U 2 = - - = = = 8.(2014大纲全国,2,5分)设集合M {x|x 3x 4<0},N {x| 18.(2012 四川,13,4分)设全集 U {a,b,c,d},集合A {a,b}, = = = 0≤x≤5},则M∩N ( ) B {b,c,d},则(∁A)∪(∁B) . U U - - A.(0,4] B.[0,4) C.[ 1,0) D.( 1,0] 18. 答案 {a,c,d} 2 8. = - - = - = = = 答案 B M {x|x 3x 4<0} {x| 1<x<4},则M∩N {x 解析 ∁ A {d,c},∁B {a}, U U = |0≤x<4}.故选B. ∴(∁ A)∪(∁B) {a,c,d}. U U = = = = + + - 9.(2014辽宁,1,5分)已知全集U R,A {x|x≤0},B {x|x≥ 19.(2011天津,13,5分)已知集合A {x∈R||x 3| |x 4|≤9},B 1},则集合∁(A∪B)= ( ) 1 U = = + - + x∈R x 4t 6,t∈(0, ) , 则 集 合 A ∩ B A.{x|x≥0} B.{x|x≤1} { t ∞ } = C.{x|0≤x≤1} D.{x|0<x<1} . - 9. = = 19. 答案 {x| 2≤x≤5} 答案 D A∪B {x|x≥1或x≤0},因此∁ (A∪B) {x|0< U x<1}.故选D. x≥4, + + - 解析 由|x 3| |x 4|≤9得{ + + - = = x 3 x 4≤9 10.(2013天津,1,5分)已知集合A {x∈R||x|≤2},B {x∈R - - |x≤1},则A∩B= ( ) 3<x<4, x≤ 3, 或{ + + - 或{- - + - A.(-∞,2] B.[1,2] x 3 4 x≤9 x 3 4 x≤9, - - 1 C.[ 2,2] D.[ 2,1] = - = + - - =- ∴A {x| 4≤x≤5}.又当t>0时,x 4t 6≥2 4 6 2, = - = - t 10. 答案 D 易知A {x∈R| 2≤x≤2},故A∩B {x| 2≤x ≤1}.故选D. 1 当且仅当 t = = - 时取等号,∴ B {x |x ≥ 2},故 A ∩B 2 本题主要考查集合的运算及绝对值不等式的解法, = - {x| 2≤x≤5}. 重点考查运算能力. 2 本题考查了用零点分区间法解含绝对值的不等式、 = - <4,x ∈ 11.(2013课标全国Ⅱ,1,5分)已知集合M {x|(x 1) = - = 用均值定理求值域,属中等难度题. R},N { 1,0,1,2,3},则M∩N ( ) 2 = - = + + - 20.(2010江苏,1,5分)设集合A { 1,1,3},B {a 2,a 4}, A.{0,1,2} B.{ 1,0,1,2} = - A∩B {3},则实数a 的值为 . C.{ 1,0,2,3} D.{0,1,2,3} 11. = - = 20. 答案 1 答案 A 化简得M {x| 1<x<3},所以M∩N {0,1,2}, + = = = - = 故选A. 解析 由a 2 3,得a 1.检验此时A { 1,1,3},B {3, 2 = = - = + - 5},A∩B {3},满足题意. 12.(2013浙江,2,5分)设集合S {x|x> 2},T {x|x 3x 4≤ = 0},则(∁ S)∪T ( ) 本题考查集合定义和交集运算,属容易题. R - - - A.( 2,1] B.( ∞, 4] 以下为教师用书专用(21—37) C.(-∞,1] D.[1,+∞) = = 21.(2013重庆,1,5分)已知全集U {1,2,3,4},集合A {1, = - = - 12. 答案 C ∁S {x|x≤ 2},又T {x| 4≤x≤1},故(∁S) R R = = 2},B {2,3},则∁ (A∪B) ( ) U = ∪T {x|x≤1},选C. 2 A.{1,3,4} B.{3,4} C.{3} D.{4} = = - 13.(2012浙江,1,5分)设集合A {x|1<x<4},集合B {x|x = = 答案 D A∪B {1,2,3},∁(A∪B) {4}.故选D. U - = 2x 3≤0},则A∩(∁B) ( ) R = - = - 22.(2013北京,1,5分)已知集合A { 1,0,1},B {x| 1≤x< A.(1,4) B.(3,4) 1},则A∩B= ( ) C.(1,3) D.(1,2)∪(3,4) - A.{0} B.{ 1,0} = - = 13. 答案 B B {x| 1≤x≤3},A∩(∁B) {x|3<x<4},故 R - C.{0,1} D.{ 1,0,1} 选B. = - = - 2 答案 B ∵A { 1,0,1},B {x| 1≤x<1}, = - = 14.(2012湖南,1,5分)设集合M { 1,0,1},N {x|x ≤x},则 = - ∴A∩B { 1,0},故选B. M∩N= ( ) 2 = + = = 23.(2013广东,1,5分)设集合M {x|x 2x 0,x∈R},N {x| - - A.{0} B.{0,1} C.{ 1,1} D.{ 1,0,1} 2 - = = x 2x 0,x∈R},则M∪N ( ) = - = 14. 答案 B ∵ M { 1,0,1},N {x|0≤x≤1}, - - A.{0} B.{0,2} C.{ 2,0} D.{ 2,0,2} = ∴M∩N {0,1},故选B. = - = 答案 D 化简两个集合,得M { 2,0},N {0,2},则M 15.(2011辽宁,2,5分)已知M,N 为集合I 的非空真子集,且 = - ∪N { 2,0,2},故选D. = = M,N不相等,若N∩∁M ⌀,则M∪NI ( ) 24. (2013 湖北,2,5 分 ) 已知全集为 R,集合 A = A.M B.N C.I D.⌀
第一章 集合与常用逻辑用语 1 第一章 集合与常用逻辑用语 §1.1 集合与集合的运算 对应学生用书起始页码 1 2 0 1 0 — 2 0 1 4 - - 考点一 集合与集合的关系 解析 集合 { 1,0,1}的子集有⌀,{ 1},{0},{1}, 2 - - - = - = { 1,0},{ 1,1},{0,1},{ 1,0,1},共8个. 1.(2013课标全国 Ⅰ,1,5分)已知集合A {x|x 2x>0},B {x - 本题考查子集的概念,忽视⌀是学生出错的主要原 | 5<x< 5},则 ( ) = = 因. A.A∩B ⌀ B.A∪B R C.B⊆A D.A⊆B 1. = = - 答案 B 化简A {x|x>2或x<0},而B {x| 5<x< 5}, 以下为教师用书专用(8) = - = = = 所以A∩B {x| 5<x<0或2<x< 5},A项错误;A∪B R,B 8.(2010湖南,1,5分)已知集合M {1,2,3},N {2,3,4},则 项正确;A 与B没有包含关系,C项与D项均错误.故选B. ( ) = = - 2.(2013 山东,2,5分)已知集合A {0,1,2},则集合 B {x A.M⊆N B.N⊆M = = y|x∈A,y∈A}中元素的个数是 ( ) C.M∩N {2,3} D.M∪N {1,4} = A.1 B.3 C.5 D.9 答案 C 由韦恩图可知M∩N {2,3}. = = - 2. 答案 C ①当x 0 时,y 0,1,2,此时x y 的值分别为0, - - 1, 2; = = - - ②当x 1时,y 0,1,2,此时x y 的值分别为1,0, 1; = = - ③当x 2时,y 0,1,2,此时x y 的值分别为2,1,0. 评析 本题主要考查集合运算,较容易,利用图示解决本题 - - - 综上可知,x y 的可能取值为 2, 1,0,1,2,共5个,故选C. 较直观. = - = 3.(2012江西,1,5分)若集合A { 1,1},B {0,2},则集合{z| = + z x y,x∈A,y∈B}中的元素的个数为 ( ) A.5 B.4 C.3 D.2 考点二 集合的基本运算 = = = + = - 1.(2014浙江,1,5分)设全集 U {x∈N|x≥2},集合A {x∈N 3. 答案 C 集合{z|z x y,x∈A,y∈B} { 1,1,3},故选C. 2 2 |x ≥5},则∁A= ( ) = = = U 4.(2011湖南,2,5分)设集合M {1,2},N {a },则“a 1”是 “N⊆M”的 ( ) A.⌀ B.{2} C.{5} D.{2,5} 1. = = = A.充分不必要条件 B.必要不充分条件 答案 B ∵A {x∈N|x≥ 5} {x ∈N|x≥3},∴∁A {x U = C.充分必要条件 D.既不充分又不必要条件 ∈N|2≤x<3} {2},故选B. 2 = = - + = = = 2.(2014课标Ⅱ,1,5分)设集合M {0,1,2},N {x|x 3x 2≤ 4. 答案 A 当a 1时,N {1},则“N⊆M”成立,所以“a 1” 2 = 2 = = = 0},则M∩N= ( ) 是充分条件;当N⊆M 时,a 1或a 2,得a ±1或a ± 2, = A.{1} B.{2} C.{0,1} D.{1,2} 所以“a 1”不是必要条件,故选A. 2 2. = = = = 答案 D 由已知得N {x|1≤x≤2},∵M {0,1,2},∴M 5.(2010浙江,1,5分)设P {x|x<4},Q {x|x <4},则 ( ) = A.P⊆Q B.Q⊆P C.P⊆∁ Q D.Q⊆∁P ∩N {1,2},故选D. R R 2 = - - = = - 3.(2014课标 Ⅰ,1,5分)已知集合A {x|x 2x 3≥0},B {x| 5. 答案 B ∵ Q {x| 2<x<2},∴ Q⊆P,故选B. = -2≤x<2},则A∩B= ( ) 6.(2010福建,9,5分)对于复数a,b,c,d,若集合S {a,b,c,d} ·· - - - - A.[ 2, 1] B.[ 1,2) C.[ 1,1] D.[1,2) = 2 a 1, - - - 3. 答案 A 由不等式x 2x 3≥0解得x≥3或x≤ 1,因此 2 = + + 具有性质“对任意x,y∈S,必有xy∈S”,则当 b 1,时,b c d = - = - { 2 = 集合A {x|x≤ 1或x≥3},又集合B {x| 2≤x<2},所以A c b = - - ∩B {x| 2≤x≤ 1},故选A. 等于 ( ) = - = 4.(2014广东,1,5分)已知集合M { 1,0,1},N {0,1,2},则 - A.1 B. 1 C.0 D.i M∪N= ( ) = 6. 答案 B ∵ S {a,b,c,d},由集合中元素的互异性可知当 - A.{0,1} B.{ 1,0,2} 2 = =- =- = a 1时,b 1,c 1,∴c ±i.又“对任意x,y∈S必有xy∈S” - - C.{ 1,0,1,2} D.{ 1,0,1} = + + = - + =- 知∓i∈S,即d ∓i,∴b c d ( 1) 0 1,故选B. = - 4. 答案 C 由集合的并集运算可得,M∪N { 1,0,1,2},故 本题考查了集合中元素的互异性及复数的基本运 选C. 2 = - - 5.(2014 四川,1,5分)已知集合A {x|x x 2≤0},集合B 为 算,同时考查了学生的创新能力,属于中等难度题. - 整数集,则A∩B= ( ) 7.(2013江苏,4,5分)集合{ 1,0,1}共有 个子集. - - - 7. 答案 8 A.{ 1,0,1,2} B.{ 2, 1,0,1}
1,5分)设集合M={0,1,2},N={x|x2-3x+2≤0},则M∩N=( )A.{1}B.{2}C.{0,1}D.{1,2}
相关推荐
你 发表评论:
欢迎- 江苏高考排行
- 最近发表
- 标签列表
-